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Introduction
The innate immune system plays a critical role in host defense against 
invading pathogens through the activation of pattern recognition 
receptors (PRRs) by highly conserved pathogen-associated molecu-
lar patterns (PAMPs) or host-derived danger-associated molecular 
patterns (DAMPs). PRRs include TLR, RIG-I–like receptors (RLR), 
C-type lectin receptors (CLR), nucleotide-binding domain leucine-
rich repeat-containing family (NLR), and those belonging to the 
Pyrin and HIN200 domain-containing (PYHIN) family.

The human NLR family comprises over 23 structurally related 
proteins, the functions of many of which remain unknown (1). A 
number of NLRs and the PYHIN family member AIM2 form multi
protein complexes called inflammasomes, which play key roles 
in regulating both innate and adaptive immune responses. The 
assembly of an inflammasome results in a platform consisting of an 
NLR or AIM2, in most cases, the adaptor protein apoptosis-associ-
ated speck-like protein containing a caspase activation and recruit-
ment domain (CARD), known as ASC, and the cysteine protease 
caspase-1 (Figure 1 and ref. 1). Inflammasome activation results 
in the release of potent proinflammatory mediators and thus is a 
tightly regulated process, as their inadvertent release could cause 
collateral tissue damage. Inflammasome activation is generally a 
two-step process. The priming step results in the transcription of 
pro–IL-1β, pro–IL-18, and certain inflammasome components (2). 
The second signal, which can be initiated by a variety of stimuli, 
results in the activation of the inflammasome (2). The two-step 
process for inflammasome activation is clearly required for NLRP3 
inflammasome activation; however, the requirement for a separate 
priming step is less clear for NLRP1, NLRC4, and AIM2 inflam-
masomes. Once activated, the inflammasome complex serves as 
a platform for the autocatalytic cleavage of pro–caspase-1 into its 

mature activated form. Caspase-1 in turn cleaves pro–IL-1β and 
pro–IL-18 into their mature secreted forms. Caspase-1 activation is 
also required for the initiation of an inflammatory programmed cell 
death pathway termed pyroptosis. In addition, inflammasome acti-
vation is associated with the rapid release of eicosanoids that drive 
further inflammation and vascular permeability (3).

NLRP1, NLRP3, NLRC4, and AIM2 are the best-characterized 
sensors capable of forming inflammasome complexes (Figure 1). 
Recently, NLRP2, NLRP6, NLRP7, RIG-I, pyrin, and IFI16 have been 
implicated in the formation of unique inflammasome complexes 
(4–8); however, additional investigation will be required to establish 
their precise roles in inflammasome formation and activation. Pyrin, 
mutations in which cause the autoinflammatory disease familial 
Mediterranean fever, can also form a caspase-1–activating inflamma-
some in concert with ASC (9, 10). Interestingly, a recent study dem-
onstrated that the Pyrin inflammasome is activated through the sens-
ing of bacterial modification and inactivation of Rho GTPases (11).

Noncanonical inflammasome activation promotes activation of 
caspase-11, which is important for caspase-1 activation, IL-1β secre-
tion, and pyroptotic cell death in response to Escherichia coli, Citro-
bacter rodentium, and Vibrio cholerae (12). Activation of caspase-11 
is triggered by the detection of cytosolic acylated lipid A, which is a 
component of LPS that is present in many Gram-negative bacteria. 
Of note, intracellular LPS or acylated lipid A is capable of activat-
ing caspase-11 independently of TLR4; however, the identity of the 
receptor that recognizes cytosolic LPS remains unclear (13, 14). A 
recent study demonstrated that human caspase-4 and caspase-5 and 
mouse caspase-11 were capable of directly binding to LPS and lipid 
A, resulting in their activation and the initiation of cell death (15).

Pathogen-mediated inflammasome activation
A single NLRP1 gene is present in humans; in contrast, mice pos-
sess three NLRP1 orthologs, Nlrp1a, Nlrp1b, and Nlrp1c. An impor-
tant structural difference between human NLRP1 and its murine 
orthologs is that mice lack the N-terminal Pyrin domain (PYD) that 
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detects the cytosolic presence of these agonists; rather, it prob-
ably responds to a cellular stress signal induced by the infectious 
agents. Recent studies suggest that mitochondrial dysfunction 
leading to the release of mitochondrial DNA (mtDNA) and the 
phospholipid cardiolipin triggers activation of the NLRP3 inflam-
masome (25, 26); the current understanding of the mechanism of 
NLRP3 activation is reviewed in detail elsewhere (20).

The NLRC4 inflammasome is activated by a number of 
Gram-negative bacteria that possess either a type III (T3SS) or 
type IV (T4SS) secretion system, including Pseudomonas aeru-
ginosa, Salmonella enterica, Legionella pneumophila, and Shigella 
flexneri (27). NLRC4 is activated in response to the detection of 
cytoplasmic flagellin or specific components of the bacterial T3SS 
or T4SS secretion systems. Activation of the NLRC4 inflamma-
some requires the involvement of the neuronal apoptosis inhibitor 
protein (NAIP) subfamily of NLR proteins. Murine NAIP1 binds to 
the needle protein of the T3SS; NAIP2 recognizes the basal rod 
structure of the T3SS; NAIP5 and NAIP6 bind to cytosolic flagel-
lin (27). There is only one human NAIP homolog, which binds to 
the needle protein of the T3SS (27).

The AIM2 inflammasome plays a role in host defense through 
the recognition of dsDNA within the cytosol. This occurs through 
direct binding of DNA to the HIN200 domain of AIM2. AIM2 
inflammasome activation occurs in response to infection with a 
number of intracellular bacterial pathogens (Francisella tularensis, 
Mycobacterium tuberculosis, L. monocytogenes, and others) and virus-
es (cytomegalovirus, vaccinia virus, and others) (28).

Bacterial effector molecules that facilitate 
evasion of inflammasome activation
Given the role of the inflammasome in controlling a wide array of 
microbial pathogens, it is not surprising that a number of organ-
isms have evolved specific strategies to avoid activation of this 
innate immune pathway. A number of pathogenic Gram-negative 
bacteria utilize a T3SS or T4SS to inject effector molecules into the 
cytoplasmic compartment of the host cell. The T3SS and T4SS are 
complex macromolecular structures that span both bacterial mem-
branes and include a long, needle-like structure through which 
the effector molecules pass into the cytoplasm of the eukaryotic 
host cell. These effector molecules are capable of altering host cell 
functions, including inflammasome activation.

is present in human NLRP1 (1). The murine NLRP1B inflamma-
some regulates macrophage cell death in response to anthrax lethal 
toxin (16). NLRP1B also plays an important role in host defense 
against Bacillus anthracis in vivo (17). Recent studies have demon-
strated that the Nlrp1 locus is also required for host defense against 
the intracellular protozoan parasite Toxoplasma gondii (18, 19).

The NLRP3 inflammasome has been associated with numer-
ous pathologic states, including infectious, autoinflammatory, 
and autoimmune disorders. As such, a wide array of agonists are 
capable of activating the NLRP3 inflammasome, including those 
derived from microbes (PAMPs) or from endogenous or environ-
mental sources (DAMPs) (20). Microbial activators of the NLRP3 
inflammasome include both Gram-positive and Gram-negative 
bacteria (Staphylococcus aureus, Listeria monocytogenes, Strepto-
coccus pneumoniae, Neisseria gonorrhoeae, and others) (21), fungi 
(Candida albicans, Aspergillus fumigatus, Microsporum canis, and 
others) (22), RNA and DNA viruses (influenza virus, adenovirus, 
respiratory syncytial virus [RSV], and others) (23), and parasitic 
pathogens (Plasmodium chabaudi, Leishmania amazonensis, and 
Schistosoma mansoni) (24). Given the large number of chemi-
cally and structurally diverse agonists that are capable of activat-
ing the NLRP3 inflammasome, it is unlikely that NLRP3 directly 

Figure 1. Schematic of AIM2, NLRP1B, NLRP3, and NLRC4 inflamma-
somes. (A) The AIM2 inflammasome detects the presence of cytosolic 
dsDNA via its HIN200 domain. AIM2 then recruits ASC through its N-termi-
nal PYD, which recruits caspase-1 via its CARD domain. (B) B. anthracis 
lethal toxin and T. gondii can induce the activation of the NLRP1B inflam-
masome. Mouse NLRP1B does not possess a functional N-terminal PYD 
that is found in human NLRP1; thus, caspase-1 is proposed to interact with 
its C-terminal CARD. (C) A diverse array of agonists can activate the NLRP3 
inflammasome; it is thought that they ultimately lead to mitochon-
drial dysfunction, resulting in mtDNA and cardiolipin interactions with 
NLRP3, which leads to its activation. NLRP3 interacts with ASC through 
an N-terminal PYD, which then recruits caspase-1. (D) NAIP1, NAIP2, and 
NAIP5/6 bind to the T3SS needle and rod proteins and bacterial flagellin, 
respectively. The NAIP proteins in turn activate the NLRC4 inflammasome. 
FIIND, domain with function to find; NACHT, nucleotide-binding and oligo-
merization domain; LRR, leucine-rich repeats; BIR, baculovirus IAP repeat 
domain; HIN200; HIN200 domain.
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known effector molecules, ExoS, ExoT, ExoU, and ExoY, which 
can be secreted into the host cell. ExoU has phospholipase A2 
activity, which is required to suppress caspase-1 activation by an 
as-yet-unknown mechanism (36).

ExoS, another P. aeruginosa effector molecule, is also trans-
located into host cells through the T3SS (Figure 2). Interestingly, 
although most P. aeruginosa strains carry ExoT and ExoY, the pres-
ence of ExoS and ExoU appears to be mutually exclusive (41). ExoS is 
a Rho GTPase/ADP-ribosyltransferase (ADPR) protein. ExoS-com-
petent bacteria have been shown to inhibit P. aeruginosa–induced 
IL-1β maturation (37). ExoS also appears to effectively switch the 
mode of death of P. aeruginosa–infected cells from proinflamma-
tory caspase-1–dependent pyroptosis to a comparably noninflamma-
tory caspase-3–dependent apoptotic cell death (37). It is not known 
whether ExoS-induced caspase-3 activation is an active process or a 
consequence of caspase-1 inhibition. However, the strategy of induc-
ing cellular death dependent upon caspase-3 may allow the organ-
ism to “silently” replicate prior to activation of the innate immune 
response. The direct link between in vivo virulence and inhibition of 
inflammasome activation by ExoS- and ExoU-containing P. aerugi-
nosa strains is an area that requires further investigation.

Yersinia spp. Pathogens belonging to the genus Yersinia also 
have effector proteins capable of modulating caspase-1 activity. 
A number of species from the genus Yersinia possess the effector 
molecule YopM that in Y. pseudotuberculosis inhibits caspase-1 
activity by binding to the active site of caspase-1 (Figure 2). This 
was mediated by a four–amino acid sequence in an exposed loop 
of YopM, which bears similarity to caspase-1 substrate YVAD. 
The interaction between YopM and caspase-1 has been proposed 
to both limit the activity of caspase-1 and inhibit the assembly of 
the complete inflammasome complex (39). Consistent with this 
innate immune evasion function of YopM, Y. pseudotuberculosis 
strains bearing mutated YopM are highly attenuated in vivo. Fur-
ther, this attenuation has been demonstrated to be dependent 
upon caspase-1, thus implicating the ability to subvert the activa-
tion of the inflammasome as being an important survival strategy 
in the pathogenesis of YopM-competent Yersinia (39).

YopE and YopT are Yersinia effector proteins that target the actin 
cytoskeleton of the host cell and limit phagocytosis of the bacteria 
through targeting of Rho GTPase family members. YopE and YopT 
from Y. enterocolitica have also been demonstrated to inhibit pro–
caspase-1 oligomerization and maturation when overexpressed (Fig-
ure 2). Overexpression of YopE and YopT interferes with Rac-1 activa-
tion and significantly inhibits caspase-1 activation (40). This inhibition 
of caspase-1 activation by YopE and YopT resulted in diminished 
macrophage caspase-1–mediated processing of pro–IL-1β into its 
mature secreted form (40). In a separate study, it was determined that  
Y. enterocolitica strains with mutant YopE were moderately attenu-
ated in vivo (42). However, Y. enterocolitica YopT mutants did not 
display any defects in virulence (42). To date, no study has investi-
gated a role for inflammasome activation or IL-1β secretion in the 
virulence of this mutation in vivo; therefore, additional studies are 
warranted to determine the role of the inflammasome in response to 
YopE- or YopT-deficient Yersinia spp.

The final identified mechanism by which Yersinia spp. subverts 
inflammasome activation is through the activity of YopK (Figure 2).  
YopK from Y. pseudotuberculosis was shown to bind to the T3SS 

S. enterica serovar typhimurium requires two T3SSs for viru-
lence, and the Salmonella pathogenicity islands SPI-1 and SPI-2 
respectively encode these T3SSs. Intracellular S. typhimurium 
activates both NLRP3 and NLRC4 inflammasomes (29). SPI-1 
T3SS–mediated injection of flagellin and the PrgJ rod protein into 
the macrophage cytoplasm results in NLRC4 inflammasome acti-
vation (30–32). During the systemic phase of infection, SPI-1 and 
flagellin expression are downregulated, allowing S. typhimurium 
to evade NLRC4 inflammasome activation (33). To promote rep-
lication within macrophages, S. typhimurium instead relies on the 
SPI-2–encoded T3SS, whose rod protein, SsaI, is not recognized 
by the NLRC4 inflammasome (30). S. typhimurium–induced 
NLRP3 inflammasome activation occurs in a T3SS-independent 
manner; however, the specific stimuli has yet to be identified (29). 
S. typhimurium has also developed mechanisms to evade NLRP3 
inflammasome activation by utilizing the TCA enzymes aconi-
tase (acnB) and isocitrate dehydrogenase (icdA). Interestingly, 
acnB and icdA mutants induced rapid NLRP3 inflammasome acti-
vation through a process that resulted in elevated bacterial citrate 
and increased mitochondrial reactive oxygen species (34).

In contrast to S. typhimurium, Yersinia spp., P. aeruginosa, and 
Vibrio parahaemolyticus have all been shown to utilize secreted 
effector molecules to subvert inflammasome activation (35–40); we 
will discuss Yersinia spp. and P. aeruginosa in greater detail below.

P. aeruginosa. One of the first reports of inflammasome 
inhibition by a pathogen described the ability of exoenzyme U 
(ExoU) expressing P. aeruginosa to inhibit NLRC4 inflamma-
some activation (Figure 2 and ref. 36). P. aeruginosa has four 

Figure 2. Bacterial effector molecule–mediated inhibition of the NLRC4 
inflammasome. Y. pseudotuberculosis YopK is secreted into the host cell 
through the T3SS; YopK interacts with the translocon structure of the T3SS 
and effectively masks it from recognition by NAIP/NLRC4. Y. pseudotuber-
culosis YopM directly inhibits caspase-1 by binding to its catalytically active 
site. Y. enterocolitica YopE and YopT inhibit caspase-1 activation through 
an unknown mechanism. P. aeruginosa ExoU and ExoS inhibit NLRC4 
inflammasome and caspase-1 activation through an unknown mechanism.
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ity was associated with increased IL-1 secretion and pyroptotic cell 
death. Hyperactivation of the AIM2 inflammasome was linked 
to impaired cell wall integrity of the lmo2473 mutant, driving an 
increase in its intracellular lysis. Enhanced bacterial lysis resulted 
in an increase in DNA release into the cytosol that in turn triggered 
augmented AIM2 inflammasome activation (43). Therefore, the 
maintenance of normal bacterial cell wall integrity while in the 
host cell cytosol, dependent in part upon expression of lmo2473, 
allowed the bacteria to subvert robust AIM2 activation.

F. tularensis is a virulent Gram-negative bacterium that, after 
its phagocytosis by the macrophage, escapes the phagosome into 
the cytosol where it replicates. Although this escape from the 
phagosome is critical to the survival of F. tularensis, it is thought 
to be associated with damage to a small population of bacteria. 
As in the case of L. monocytogenes lysis described above, damage 
of F. tularensis is associated with release of dsDNA, resulting in 
the activation of the AIM2 inflammasome. AIM2 inflammasome 
activation in turn leads to the secretion of IL-1β and IL-18 and 

translocon, effectively masking it from recognition by NLRC4 
(38). In the absence of YopK, Y. pseudotuberculosis activates cas-
pase-1 in an NLRP3/NLRC4/ASC-dependent manner, resulting 
in increased bacterial clearance of the YopK mutant in vivo (38).

Preventing DNA release to avoid AIM2 
inflammasome activation
F. tularensis, L. monocytogenes, and L. pneumophila all express pro-
teins that allow the bacteria to evade robust activation of the AIM2 
inflammasome. L. monocytogenes is a Gram-positive facultative 
intracellular pathogen that rapidly replicates within host cells. Fol-
lowing internalization, L. monocytogenes escapes the phagosome 
and enters the host cell cytosol by a mechanism that is specialized 
in its ability to prevent the associated induction of host cell death. 
Mutation of lmo2473, a gene that encodes a protein of unknown 
function, resulted in L. monocytogenes that hyperactivated the 
AIM2 inflammasome independently of both NLRC4 and NLRP3 
(Figure 3 and ref. 43). This increased AIM2 inflammasome activ-

Figure 3. Evasion of AIM2 inflammasome activation by intracellular pathogens. F. tularensis and L. monocytogenes express a number of proteins 
involved in maintenance of bacterial cell wall integrity. In their absence, increased damage to a subpopulation of bacteria occurs while in the macrophage 
phagosome, resulting in leakage of bacterial DNA. Once Francisella and Listeria escape into the cytosol of the cell, this DNA is also released into the host 
cell cytosol, where it interacts with and activates the AIM2 inflammasome. F. tularensis ripA and the gene products of FTL_0325 inhibit MAPK and TLR2 
signaling, respectively, and interfere with priming of the AIM2 inflammasome. L. pneumophila secretes the effector molecule into the LCV, where it main-
tains LCV membrane integrity and prevents Legionella DNA from entering the cytosol and being recognized by AIM2. M. tuberculosis secretes DNA into the 
cytosol via the ESX-1 secretion system concurrently with an unknown inhibitor of IFN-β and also possibly AIM2.
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Evasion of inflammasome activation by 
pathogen decoy proteins
An inflammasome evasion strategy that has been described in 
viruses is the expression of viral decoy proteins that attenuate 
inflammasome activation. Kaposi’s sarcoma–associated herpes 
virus (KSHV) encodes an NLRP1 homolog that lacks PYD and 
CARD, interacts with host NLRP1, NLRP3, and NOD2, and inhib-
its virally induced IL-1β secretion. The authors suggest that this 
ability of KSHV to inhibit inflammasome activation may contrib-
ute to the establishment of long-term viral persistence (55).

Johnston et al. identified a poxvirus-encoded PYD-containing 
protein, M13L, which interacted with ASC and inhibited subse-
quent inflammasome activation. Deletion of M13L resulted in 
attenuation of myxoma virus in rabbits in vivo (56). Cowpox virus 
and other orthopox viruses encode a protein that can also inhibit 
caspase-1 activity (57). The cowpox-encoded cytokine response 
modifier A (CrmA) protein serves as a pseudo-target for active 
caspase-1 that, upon cleavage, covalently bonds with a cysteine in 
the active site of caspase-1, rendering it inactive. This inactivation 
is very potent, occurs at very low concentrations of CrmA, and is 
important to virulence, as cowpox viruses lacking CrmA are highly 
attenuated in vivo (57–59). These observations further illustrate 
the importance of inflammasome subversion mechanisms as a 
survival strategy for pathogens.

Safety of IL-1 inhibitors
The clinical use of biologic agents to modulate specific inflamma-
tory pathways has grown exponentially in the past decade. Given 
the clear overlap in the pathways that are critical in the control of 
microbial pathogens and those that drive pathologic autoimmune 
and autoinflammatory diseases, it is not surprising that thera-
peutic blockade of cytokines for the treatment of autoimmune 
and autoinflammatory diseases could result in severe infectious 
complications. This is exemplified by our experience with TNF-α 
antagonists, including etanercept, adalimumab, and infliximab. 
Postmarketing data revealed a dramatic increase in the number 
of cases of M. tuberculosis reactivation related to anti–TNF-α treat-
ment (60, 61). Given that inflammasome pathways play such a crit-
ical role in the control of numerous pathogens and that a number 
of pathogens themselves have developed strategies to specifically 
evade this innate immune pathway, it seems likely that blockade 
of IL-1β would be accompanied by a significantly increased risk 
of both serious and opportunistic infections. Surprisingly, to date, 
antagonists of IL-1 have been shown to have an excellent safety 
profile that is better than nearly all other widely used biologics that 
inhibit inflammatory cytokines. The reason for the remarkable 
safety profiles of anakinra, rilonacept, canakinumab, and gevoki-
zumab is not at all clear but will be considered below.

Anakinra. The majority of the safety data on inhibiting the IL-1 
pathway comes from studies using anakinra, the first IL-1 inhibi-
tor available on the market. Anakinra is a recombinant human IL-1 
receptor antagonist (rIL-1Ra) that mimics the action of the natural 
antagonist IL-1Ra.

The earliest large-scale trials utilizing anakinra were per-
formed in the 1990s in sepsis, where it was added to standard 
therapy in an attempt to improve outcomes and to decrease mul-
tiorgan system failure (62–64). The striking feature of these trials 

the induction of macrophage pyroptosis (44, 45). Mutation of the  
F. tularensis live vaccine strain (LVS) putative lipid II flippase, 
mviN, resulted in highly attenuated bacteria in in vivo infection 
models (46). The attenuation of the mviN mutant strain was 
dependent on the inflammasome, as mice deficient in ASC or 
caspase-1, but not wild-type mice, succumbed to infection with 
the mviN mutant strain. The mviN mutant strain also hyperac-
tivates the AIM2 inflammasome in vitro (Figure 3). In addition 
to mviN, a number of additional F. tularensis LVS and F. novicida 
mutant strains have been identified that also result in increased 
macrophage cytotoxicity and elevated IL-1β secretion (Figure 3 
and refs. 47–50). Importantly, Peng and colleagues demonstrat-
ed that these mutations generally result in defects in membrane-
associated proteins or in genes involved in O-antigen or LPS 
biosynthesis (47). This results in increased intracellular lysis of 
the mutant bacteria, leading to increased bacterial DNA release 
into the host cell cytosol, which triggers AIM2 inflammasome 
activation (47). Therefore, the maintenance of bacterial mem-
brane stability is required as a strategy for F. tularensis to avoid 
AIM2 inflammasome activation. In addition, mutations in ripA 
and FTL_0325 in F. tularensis LVS resulted in hypercytotoxicity 
and increased IL-1β secretion. These gene products were not 
involved in maintaining bacterial cell wall integrity, but instead 
interfered with MAPK- and TLR2-signaling pathways and hence 
interfered with the priming step required for AIM2 inflamma-
some activation (48, 51).

L. pneumophila is a Gram-negative intracellular bacterium 
that activates the NLRC4 inflammasome via its Dot/Icm T4SS. 
L. pneumophila resides within a structure called a Legionella-
containing vacuole (LCV) that avoids fusion with lysosomes, 
thereby maintaining a replicative niche for this pathogen within 
the macrophage. The Dot/Icm-translocated effector molecule 
SdhA is required for L. pneumophila intracellular growth. Mutant 
bacteria deficient in SdhA induced elevated IL-1β secretion and 
macrophage pyroptosis that was dependent on AIM2 inflamma-
some activation, but independent of the flagellin-sensing NLRC4 
inflammasome pathway (52). Interestingly, SdhA was required 
to maintain LCV membrane integrity, and thus its absence drove 
Legionella DNA release into the cytosol and increased AIM2 but 
not NLRC4 inflammasome activation (52).

M. tuberculosis possesses an ESX-1 secretion system through 
which bacterial DNA gains entry into the host cell cytosol. Inter-
estingly, the DNA that enters the host cell does not result in AIM2 
inflammasome activation. ESX-1–competent M. tuberculosis, but 
not other closely related species of Mycobacterium, inhibits secre-
tion of IFN-β by host cells as well as IFN-β–mediated signaling 
(53). This M. tuberculosis–mediated reduction in IFN-β secre-
tion was partially responsible for the ability of M. tuberculosis 
to inhibit AIM2 inflammasome activation, as type I IFN signal-
ing is required for AIM2 inflammasome activation (54). Hence, 
the ESX-1–dependent cosecretion into the host cell cytosol of 
a putative IFN-β inhibitor (and/or AIM2 inhibitor) along with  
M. tuberculosis DNA may allow M. tuberculosis to evade AIM2 
inflammasome activation. The identity of the M. tuberculosis–
derived inhibitor of IFN-β and/or AIM2 remains unknown. 
The relevance of these findings to in vivo host defense against  
M. tuberculosis also remains to be addressed.
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was that the treatment of over 1,000 actively septic patients with 
anakinra (intravenously and in high doses) resulted in no serious 
safety concerns (62–64). However, there was not a significant 
therapeutic benefit in sepsis (65).

The therapeutic benefit of anakinra use was more apparent 
in the treatment of rheumatoid arthritis (RA); anakinra was FDA 
approved for this indication in 2001. Campion et al. reported pre-
liminary safety data in 175 patients with active RA treated with 
anakinra at varying doses (66). The trial lasted 7 weeks; the most 
common adverse event was injection-site reactions, causing 5% 
of the patients to withdraw from the study, followed by gastro-
intestinal symptoms. Sixteen percent had an infectious event. 
There was no placebo arm (66). Subsequent double-blind, ran-
domized, placebo-controlled multicenter trials were performed; 
over 2,000 patients with RA were enrolled and treated with 
anakinra, with the study confirming its excellent safety profile (67, 
68). There was no significant increase in serious infections (67–
71); however, Fleischmann et al. studied 1,346 patients with RA 
who received anakinra in a 30-month open-label extension and 
reported an increase in exposure-adjusted event rate for serious 
infections in the anakinra-treated group (5.37 events/100 patient 
years) versus controls (1.65 events/100 patient years). However, 
much of the increased risk of serious infection in this open-label 
extension was attributed to concurrent corticosteroid use (72). 
Despite this very favorable safety profile when used as the only 
biologic, the safety profile is unfavorable with combination bio-
logic therapy. Anakinra in combination with the TNF inhibitor 
etanercept resulted in more frequent and more severe infections 
with no added efficacy above etanercept alone (73). Therefore, 
the use of anakinra with another biologic cytokine-blocking agent 
should be avoided if at all possible.

Anakinra was subsequently approved by the FDA for use in neo-
natal onset multisystem inflammatory disorder (NOMID), which is 
a severe form of cryopyrin-associated periodic syndromes (CAPS) 
(74). Anakinra has been utilized in a number of other conditions, 
including other monogenic autoinflammatory disorders (75), such 
as systemic-onset juvenile idiopathic arthritis (76, 77), adult-onset 
Still disease (AOSD) (78, 79), gout (80), polyarticular juvenile idio-
pathic arthritis (sJIA) (81), diabetes (82), heart disease (83–85), and 
chronic granulomatous disease (86), among many others (87). In 
these disorders, anakinra was well tolerated except for injection-
site reactions and a slight increase in nonserious viral respiratory 
infections. To date, the development of opportunistic infections in 
individuals taking anakinra has been exceedingly rare (87).

Rilonacept. Rilonacept is a dimeric fusion protein consisting 
of the ligand-binding domains of the human IL-1R extracellular 
domains (IL-1RI and IL-1 receptor accessory protein) linked to the 
Fc portion of human IgG1. It acts as a soluble decoy receptor by 
binding to IL-1β and preventing its interaction with IL-1R on the 
cell surface. In 2008, the FDA approved rilonacept for certain 
forms of CAPS, granting it orphan drug status.

Goldbach-Mansky et al. reported the result of a small open-
label trial of rilonacept in 5 CAPS patients that showed clinical 
improvement; they did not observe any drug-related adverse 
events (88). That same year, Hoffman et al. published results on 
the efficacy and safety of rilonacept in 47 patients with CAPS (89). 
Rilonacept was generally well tolerated, with injection-site reac-

tions and nonserious viral upper respiratory infections being the 
most common adverse events (89, 90). There were 2 deaths during 
the study: a 71-year-old female who died after developing sinusitis 
and pneumococcal meningitis and a 37-year-old who died of a 
myocardial infarction. Subsequently, studies of rilonacept in other 
autoinflammatory disorders including gout (91, 92), sJIA (93, 94), 
AOSD (95), familial Mediterranean fever (96), and Schnitzler syn-
drome have been reported (97). Again, blockade of IL-1 with this 
longer-acting agent was well tolerated, with no increased risk of 
serious or opportunistic infections.

Canakinumab and gevokizumab. There are several anti–IL-1β 
monoclonal antibodies available, including canakinumab and 
gevokizumab (98, 99). Canakinumab is a fully humanized IgG1 
anti–IL-1β monoclonal antibody that binds to human IL-1β with 
high specificity and neutralizes the bioactivity of this cytokine. 
These agents have been utilized to treat a number of inflamma-
tory disorders, including CAPS (98, 100, 101), other monogenic 
autoinflammatory disorders (75), gout (102), type 1 diabetes (103), 
type 2 diabetes (104, 105), RA (106), sJIA (107), Schnitzler syn-
drome (108), and Behçet syndrome (109) as well as other inflam-
matory conditions (87).

Gevokizumab is a monoclonal anti–IL-1β antibody that nega-
tively modulates IL-1β signaling through an allosteric mechanism. 
It decreases the binding affinity of IL-1β for the IL-1 receptor type 
I (IL-1RI) signaling receptor, but not the IL-1 counterregulatory 
decoy receptor (IL-1 receptor type II) (110). It does not interfere 
with IL-1Ra or block IL-1β binding to the soluble forms of the IL-1 
receptors (111). Gevokizumab inhibits both the binding of IL-1β to 
IL-1RI and the subsequent recruitment of IL-1 accessory protein, 
primarily by reducing the association rates of these interactions; 
as such, it is a unique inhibitor of IL-1β signaling (110). Initial stud-
ies with this monoclonal antibody have been in the treatment of 
type 2 diabetes (99, 112) and Behçet disease (113).

The safety profile of the longer-acting IL-1–blocking agents 
resembles that of anakinra. However, these agents are newer and 
a smaller number of patients have been treated; therefore, the 
long-term safety profile has yet to be fully delineated.

Concluding remarks
The inflammasome is a critical mechanism by which the innate 
immune system recognizes and limits pathogenic insults. The 
inflammasome signals and coordinates the response of a num-
ber of different cell types primarily through the cytokines IL-1β 
and IL-18 and through the initiation of pyroptotic cell death. It 
is evident that the modulation of inflammasome activity is an 
important strategy employed by a number of pathogens to sub-
vert the normal innate immune response. With the recent intro-
duction of a number of different therapies targeting IL-1β and 
its receptor, it has become increasingly important to understand 
the interplay of pathogens and host in the context of inflamma-
some activation. Surprisingly, the clinical use of inhibitors of 
IL-1, such as anakinra, rilonacept, canakinumab, and gevoki-
zumab, has been associated with exceedingly few reported 
infectious complications. Inflammasome-driven pyroptosis 
and IL-18 production play nonredundant roles in host defense 
against pathogens that are not blocked by the inhibition of IL-1 
signaling. It may be that the unexpected safety profile for IL-1 
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blockade is due to this narrow function. As additional therapeu-
tic strategies to inhibit this pathway emerge, careful attention 
will be required to determine whether inhibition of inflamma-
somes in toto is similarly seemingly well tolerated. In addition, 
as the use of longer-acting IL-1 inhibitors increases, patterns 
of infectious complications may declare themselves in select 
patient populations. Finally, as new therapies are developed to 
treat infectious disease, especially therapies against pathogens 
that subvert inflammasome activation, it may prove beneficial to 
investigate the use of adjunctive treatments that trigger inflam-
masome activation to enhance the innate immune responses 
against invading pathogens.
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