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Protein kinases catalyze the phosphorylation of serine/threonine or tyrosine residues, which may directly alter a protein’s
functional properties. Kinases can also regulate protein functions indirectly, for example, by controlling the composition
and/or subcellular localization of members of multiprotein complexes that associate with the regulated protein. In this
issue of the JCI, two separate studies by Weinman et al. and Yang et al. examine the second of these two modes of
kinase-mediated regulation and demonstrate the effects of kinases on two Na+-driven renal cotransporters (see the
related articles beginning on pages 3403 and 3412). Their results reveal important implications for phosphate and salt
homeostasis, respectively.
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Protein kinases catalyze the phosphorylation of serine/threonine or tyro-
sine residues, which may directly alter a protein’s functional properties. 
Kinases can also regulate protein functions indirectly, for example, by 
controlling the composition and/or subcellular localization of members 
of multiprotein complexes that associate with the regulated protein. In 
this issue of the JCI, two separate studies by Weinman et al. and Yang et 
al. examine the second of these two modes of kinase-mediated regulation 
and demonstrate the effects of kinases on two Na+-driven renal cotrans-
porters (see the related articles beginning on pages 3403 and 3412). Their 
results reveal important implications for phosphate and salt homeosta-
sis, respectively.

Homeostatic control of body fluids is 
achieved by, among other mechanisms, a 
variety of solute transporters that oper-
ate according to the body’s needs. Thus, 
the function of these transporters is 
modulated by diverse regulatory systems. 
Frequently, the final event in a hormon-
ally stimulated signaling cascade involves 
activation of protein kinases that modify 
transporter activities by changing the 
characteristics or the subcellular localiza-
tion of the transporters. Such alterations 

can be achieved by direct phosphorylation 
of the transporter itself or via phosphory-
lation of proteins that are part of hetero-
multimeric complexes.

Protein kinase–mediated activation or 
inhibition of many hormonally controlled 
transporters have been described, yet the 
final targets in these signaling pathways 
and/or the underlying regulatory mecha-
nisms have not yet been identified. The 
work presented in this issue of the JCI in 
the articles by Weinman et al. (1) and Yang 
et al. (2) now sheds some mechanistic light 
on how the activity and/or abundance of 
ion transporters are hormonally controlled 
by protein complexes that contain protein 
kinases. These two reports respectively 
address the regulation of two ion trans-
porters that are predominantly expressed 
in kidney: the parathyroid hormone–regu-
lated (PTH-regulated) Na+-Pi cotransporter 
type IIa (Npt2a; encoded by SLC34A1 and 

also known as NaPi-IIa) (3) and the thia-
zide-sensitive Na-Cl cotransporter (NCC; 
encoded by SLC12A3 and also known as 
TSC) (4). The NCC is located on the lumi-
nal side of distal convoluted tubule (DCT) 
cells, whereas Npt2a associates with the 
brush border membranes (BBMs) of proxi-
mal tubules (PTs) (3, 5). Apical expression 
of NCC and Npt2a is under the control 
of kinases such as WNK kinases (with no 
lysine [K] in their catalytic domain II) and 
PKA/PKC, respectively. Interestingly, nei-
ther WNK nor PKA/PKC have been report-
ed to phosphorylate these transporters 
directly (3, 6–8).

Npt2a and NCC: function and 
dysfunction
Npt2a mediates Na+-coupled, electrogenic 
reabsorption of inorganic phosphate (Pi). 
The abundance of the Npt2a protein is 
regulated by dietary phosphate intake, 
by phosphaturic PTH, and by different 
phosphatonins (3, 8, 9). The importance 
of Npt2a in phosphate homeostasis was 
documented in an Npt2–/– mouse model 
that is characterized by hypophosphate-
mia (abnormally decreased level of phos-
phate in the blood) and hyperphosphatu-
ria (increased excretion of phosphate in 
the urine) due to reduced Pi reabsorption 
(10). Npt2a expression is reduced in animal 
models of X-linked hypophosphatemia, 
and a similar defect may also be implicated 

Nonstandard abbreviations used: BBM, brush border 
membrane; DCT, distal convoluted tubule; NCC, thia-
zide-sensitive Na-Cl cotransporter; NHERF-1, sodium-
hydrogen exchanger regulatory factor–1; Npt2a, Na+-Pi 
cotransporter type IIa; PDZ, PSD95/DlgA/ZO-1;  
Pi, inorganic phosphate; PT, proximal tubule; PTH, 
parathyroid hormone; WNK, with no lysine (K).
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in human hypophosphatemic syndromes 
(9). However, Npt2a downregulation is sec-
ondary to alterations in different regulato-
ry factors (e.g. FGF23, one of the so-called 
phosphatonins) (9, 11).

NCC belongs to the SLC12 electroneu-
tral cation–Cl–coupled cotransporter 
family (4), mediates reabsorption of NaCl, 
and is the target of widely used thiazide 
diuretics, which due to their vasodilator 
properties are often used to treat hyperten-
sion. Inactivating mutations in NCC cause 
Gitelman disease, an autosomal recessive 
salt-wasting (NaCl, K+, Mg2+) disorder 
characterized by hypotension (4, 5). Auto-
somal dominant Gordon disease, a conse-
quence of increased NCC activity, is char-
acterized by hypertension, hyperkalemia, 
and hyperchloremic metabolic acidosis. 
The NCC overactivity is due to increased 
expression of NCC in the apical membrane 
and hypertrophy of the DCT, secondary to 
mutations in the regulatory WNK1 and/or 
WNK4 kinases (4, 5, 6, 12).

Npt2a regulation by kinases and 
protein networks
PTH binds to its G protein–coupled 
receptor in the PT and, through activa-
tion of PKA and PKC, modulates the api-
cal abundance of Npt2a by controlling 
the rate of endocytotic Npt2a retrieval 

(Figure 1, left). PTH-induced Npt2a inter-
nalization does not involve phosphoryla-
tion of the cotransporter itself; therefore, 
it has been postulated that PTH-induced 
kinase activity indirectly affects the posi-
tioning of the Npt2a protein within the 
BBM (8, 13).

A major issue in protein kinase signal-
ing is how these enzymes achieve their 
spatial-substrate specificity. More than 
30 A kinase–anchoring proteins (AKAPs) 
and several receptors for activated kinase 
C (RACKs), with different tissue distri-
bution and subcellular locations, are 
responsible for subcellular compartmen-
talization of protein kinases and phos-
phatases (14, 15). These anchoring pro-
teins are part of heteromultimeric protein 
networks that place the kinases and/or 
phosphatases in close proximity to their 
substrates. In the case of Npt2a, such 
networks are built around the sodium-
hydrogen exchanger regulatory factor–1 
(NHERF-1) family (16, 17).

NHERF-1 was identified as a cofactor 
required for PKA-mediated inhibition of 
the Na+/H+ exchanger NHE3, due to its 
ability to simultaneously bind to NHE3 
and ezrin, an AKAP expressed in epithelia 
(for review, see ref. 16). The NHERF family 
consists of 4 related proteins that contain 
either 2 (NHERF-1/2) or 4 (NHERF-3/4) 

PSD95/DlgA/ZO-1 (PDZ) domains for 
protein-protein interaction. NHERF-1/2 
can also bind to several other transport-
ers, G protein–coupled receptors (includ-
ing the PTH receptor), and phospholipase 
C (PLC) (18). PDZ-based interactions can 
be regulated by phosphorylation of either 
protein partner involved in the protein-pro-
tein interaction. Several kinases, including 
cell division cycle 2 kinase and G protein–
coupled receptor kinase 6, phosphorylate 
NHERF-1 in vitro (19).

Npt2a interacts via its C terminus with 
several PDZ-containing proteins located in 
or in close proximity to the BBM, includ-
ing the 4 members of the NHERF family 
(20). Npt2a binds to PDZ1 of NHERF-1/2 
and to PDZ3 of NHERF3/4. The last 3 
amino acids of Npt2a are critical for these 
interactions. Npt2a expression is only 
minimally impacted in NHERF3-defi-
cient mice. However NHERF-1 deficiency 
is manifested by a reduced expression of 
Npt2a in the BBM and by an impaired 
regulation by PTH via the PKC pathway  
(17, 21, 22). This suggests an important 
role of NHERF-1 in the apical stabiliza-
tion of Npt2a and in scaffolding compo-
nents of the PKC signaling pathway.

The abundance and subcellular local-
ization of NHERF-1, in contrast to Npt2a 
is not affected by PTH, suggesting that 

Figure 1
Kinase signaling networks regulating ion transport in the kidney. Left: Regulation of the PT cell Na+-Pi cotransporter Npt2a by PTH, via apical 
and basolateral PTH receptors. As reported in this issue by Weinman et al. (1), phosphorylation at Ser77 of NHERF-1 results in a dissociation 
of Npt2a from NHERF-1, consequent Npt2a internalization, and an increased excretion of phosphate in the urine. Right: DCT cells express the 
Na+-Cl– cotransporter NCC, which is inhibited by thiazides. The study by Yang et al. (2) in this issue of the JCI reports that WNK3, a member of the 
WNK kinase family, interacts with WNK1 and WNK4 to regulate the phosphorylation and activity of NCC. WNK kinases are regulated by stimuli 
such as changes in aldosterone or extracellular potassium levels. Dotted arrows indicate that the nature of interaction between kinases (direct or 
indirect) is not known to date. KS-WNK1, kidney-specific WNK1.
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an alternative mechanism is necessary 
for the dissociation of the Npt2a/PDZ 
complex. In their study in this issue of 
the JCI, Weinman and coworkers show 
that in renal PT, PKA and PKC phos-
phorylate NHERF-1 on Ser77, a residue 
located within the first PDZ domain 
(1) (Figure 1, left). From studies per-
formed with renal PT cells derived from 
NHERF-1–deficient mice and infected 
with several adenovirus–NHERF-1 con-
structs, the authors conclude that phos-
phorylation of Ser77 is responsible for 
the PTH-induced dissociation of the 
NHERF-1/Npt2a complex, allowing for 
the retrieval of the Npt2a cotransport-
er from the BBM, whereas NHERF-1 
remains attached to the apical cytoskel-
eton (Figure 1, left). Thus, phosphoryla-
tion of Ser77 of NHERF-1 may represent 
the long-sought “off switch” that deter-
mines the lifespan of Npt2a within the 
apical membrane, whereby the off sig-
nal could be a conformational change 
within the PDZ1 domain of NHERF-1. 
Interestingly, the authors report that 
the mechanisms of phosphorylation of 
Ser77 by PKC and PKA differ. Whereas 
PKC appears to directly phosphorylate 
NHERF-1 at position Ser77, PKA-medi-
ated NHERF-1 phosphorylation seems to 
require a phosphatase. This latter finding 
indicates the presence of a rather com-
plex phosphorylation machinery within 
the apical heteromultimeric network 
that contains Npt2a. Future work will 
undoubtedly uncover the full composi-
tion of this network and thereby help to 
unravel other mechanisms involved in 
the regulation of Npt2a, such as those 
involving cGMP and MAPK kinases and 
phosphatonins (8, 9, 11).

NCC regulation by kinase networks
NCC activity is directly associated with 
regulation of blood pressure and thus 
must be tightly controlled. Analysis of 
the underlying mechanisms leading to 
Gordon syndrome (pseudohypoaldoste-
ronism type II) offers insights into the 
regulation of NCC and blood pressure. 
Hypertension, a symptom of Gordon 
syndrome, is very sensitive to treatment 
with thiazide diuretics (12), suggesting 
an important role of NCC as part of the 
pathomechanism. Gordon syndrome is 
caused by mutations in the kinases WNK1 
and WNK4 (21). Four members of the 
WNK kinase family are known in humans, 
and several studies in the past years have 

uncovered an important role for these 
kinases in the regulation of epithelial 
cell transport of potassium, sodium, 
and chloride via the regulation of several 
ion channels (e.g., renal outer medullary 
potassium channel [ROMK], epithelial 
sodium channel [ENaC], and claudins) 
and electrolyte transporters (Na+-K+-2Cl 
cotransporter 1 [NKCC1], NKCC2, NCC, 
K+-Cl– cotransporters 1–4 [KCC1–4]) (23). 
The emerging picture indicates that WNK 
kinases may interact with each other and 
with other kinases such as serum/gluco-
corticoid-regulated kinase 1 (SGK1) to 
directly and indirectly phosphorylate tar-
get proteins and thereby alter their activ-
ity. The stimulatory effect of WNK3 and 
the inhibitory effect of WNK4 on NCC 
activity had been shown (7, 24), but the 
underlying mechanisms of these effects 
as well as that of the interplay of WNK 
kinases with other kinases remained elu-
sive. In this issue of the JCI, Yang et al. (2) 
analyze the role of WNK3 in the network 
of NCC regulation, which also involves 
WNK1 and WNK4, using heterologous 
expression in Xenopus oocytes. The major 
finding is that WNK1, as well as the short, 
kidney-specific isoform of WNK1 known 
as KS-WNK1, WNK3, and WNK4 form a 
regulatory complex of physically inter-
acting and mutually regulating kinases  
(Figure 1, right). These interactions do not 
always require the kinase-active domains, 
suggesting that in some instances WNK 
kinases may also act as scaffolding pro-
teins for other (WNK) kinases. More 
interestingly, the effect of coexpression of 
WNK kinase isoforms with NCC showed 
a graded response depending on the actu-
al stoichiometry of kinases present. Thus, 
WNK kinases are not providing a simple 
on-off switch; instead, the data imply 
that the presence of several WNK kinase 
isoforms that regulate each other in the 
renal DCT allows for the fine tuning of 
NCC over a wide range of transport activ-
ity. Expression of WNK kinase isoforms 
is influenced by factors such a dietary 
potassium intake or aldosterone and 
may therefore integrate these inputs into 
the differential regulation of transport 
mechanisms for potassium and NaCl. In 
addition, Yang et al. also offer a new inter-
pretation of the pathomechanism of Gor-
don syndrome. Mutations in WNK4 (i.e. 
WNK4 Q562E) cause hypertension by dis-
inhibiting NCC activity, a trait inherited 
in an autosomal dominant manner (25), 
which cannot be easily reconciled with 

the direct inhibitory effect of WNK4 on 
NCC activity. In their current study, Yang 
et al. (2) show that WNK4 Q562E acts as 
a dominant-negative inhibitor of normal 
WNK4 function and thereby releases the 
inhibition of NCC, causing hyperactivity 
of this important transporter.

Conclusions
The studies by Weinman et al. (1) and 
Yang et al. (2) described here provide 
compelling evidence for the emerging 
view that the regulation of membrane 
transporter function is not a linear cas-
cade of events but the result of the inte-
gration of various signals that requires a 
complex machinery of receptors, kinases, 
phosphatases, and scaffolding proteins 
and allows for the graded and fine-tuned 
adaptation of transporter function to 
cellular or whole-body needs. We are only 
just beginning to understand how such 
macromolecular complexes are built and 
regulated.
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Macular degeneration, during which the posterior part of the eye known 
as the macula suffers from thinning, atrophy, and bleeding caused by 
abnormal angiogenesis (blood vessel formation), predominantly affects 
elderly adults and results in the loss of central vision. In this issue of the 
JCI, Kelly et al. investigate the regulation of innate immune cells, specifi-
cally macrophages, in ocular neovascularization following eye injury in 
mice (see the related article beginning on page 3421). They found that, as 
the mice aged, increased expression of IL-10 by senescent macrophages 
and changes in their expression of other cytokines altered the ability of 
these cells to restrain trauma-induced angiogenesis in the eye. These data 
provide insight into the effect of senescence on macrophage function and 
angiogenesis and have important implications for age-related diseases 
such as macular degeneration.

Neovascularization and the eye
The eye is a delicate structure with a finely 
developed blood vessel network, and any 
disturbances to this delicate system may 
lead to new blood vessel formation (angio-
genesis) in areas of the eye that normally 
do not contain blood vessels, which may 
interfere with the function of the eye. In 

ocular diseases, abnormal blood vessel for-
mation (neovascularization) often has a 
detrimental effect on vision. An important 
example of a disease in which the forma-
tion of abnormal blood vessels affects the 
eye is diabetic retinopathy, in which closure 
of retinal capillaries leads to ischemia, fol-
lowed by the production of the proangio-
genic growth factor VEGF, which induces 
the development of new blood vessels of an 
inferior type (1). Such vessels tend to bleed 
or grow into locations where they dam-
age vision. Another example is age-related 
macular degeneration (AMD). While the 
central area of the retina, the macula, is 

normally devoid of blood vessels, in AMD, 
aberrant blood vessels develop in this area 
and destroy central vision. In response to 
hypoxia, these blood vessels grow from the 
underlying choroid through Bruch’s mem-
brane into the subretinal space (Figure 1). 
This type of AMD is known as neovascu-
lar or wet AMD; together with geographic 
atrophy and dry AMD (a discrete, central 
area with depigmentation and breakdown 
of light-sensitive cells in the macula), these 
are the clinical forms known as AMD. 
Advanced AMD is a frequent cause of 
severe visual impairment among the elder-
ly. The estimated prevalence of AMD is 11% 
in those aged 80 years and over (2), and 95% 
of cases of legal blindness in this age group 
are caused by AMD.

Macrophages and neovascularization
Macrophages have been shown to have 
both pro- and antiangiogenic effects fol-
lowing tissue injury in the eye, which sug-
gests that their activity is carefully regu-
lated in a complex manner, likely by local 
cytokines: on one hand, it has for instance 
been shown that macrophages are essential 
for removal of the hyaloid vessels; on the 
other hand, macrophages are necessary to 

Nonstandard abbreviations used: AMD, age-related 
macular degeneration; FasL, Fas ligand.
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