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Supplemental methods 

Identification of individuals with absent fetal insulin secretion 

Individuals with recessive mutations in the INS gene (detected by targeted Sanger sequencing) 

or a mutation in a gene known to cause pancreatic agenesis (detected by targeted next 

generation sequencing as previously described (1)) were identified from an international, 

multi-ethnic cohort referred to the Exeter Genomics Laboratory for genetic diagnostic testing 

of neonatal diabetes. 

For this study, all individuals had permanent neonatal diabetes requiring insulin treatment that 

was recognized in the first seven days of life. Individuals with a mutation associated with 

pancreatic agenesis additionally had evidence of exocrine insufficiency (clinical or 

biochemical). All individuals needed an available gestational age, sex and weight at birth, 

leaving 21 individuals with recessive mutations in the insulin gene (INS) and 43 individuals with 

pancreatic agenesis (CNOT1 [n = 2], GATA6 [n = 20], PDX1 [n = 3] or PTF1A [n = 19]) included in 

the final cohort. Follow-up of growth after birth was restricted to those with a recessive INS 

mutation (total n=10), since pancreatic exocrine insufficiency causes malabsorption and may 

have impacted on growth (2). 

Collection of clinical data  

Clinical details were provided by referring clinicians. For the postnatal growth follow-up data, 

we collected serial measures of weight and length/height until at least 4 years of age (where 

possible). We also requested a most recent weight and height measurement, HbA1c and daily 

insulin dose. For two individuals, we used measurements at referral (age 11 and 22 years) as 

the most recently available measurement. All data was routinely collected in a clinical practice 

setting.  

Standardization of anthropometric measurements  
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Birth weight (n=64) and length (n=17) were standardized for sex and gestational age at birth in 

weeks and days using the INTERGROWTH-21st standards (3) and studied as standard deviation 

scores (SDS). Postnatal weight and length/height were standardized for sex and age at 

measurement (in months and weeks for the first 12 months, then months thereafter) using the 

WHO Child Growth Standards (4) with correction for gestational age at birth until the age of 

four years. There were 10 individuals with serial weight measurements and 9 individuals with 

serial length/height measurements (7 of whom had a corresponding birth length) that could be 

combined for analysis. We approximated the measurements within each individual to exact 

three-monthly windows for the first year of life (3, 6, 9 and 12 months) and six-monthly 

intervals for the next three years of life (18, 24, 30, 36, 42 and 48 months) using a linear 

interpolation. Most recently available weight (n=16) and height (n=15) were standardized for 

sex and age of measurement using the UK-WHO/British 1990 Growth Reference (5) since it is 

integrated with the aforementioned WHO Child Growth Standards and provides 

standardization for age and sex up until 18 years of age. Most recently available weights and 

heights in adults were standardized to an age of 18 years. 

Statistics  

Data were summarized as n (%) for categorical data (sex, ethnic ancestry, parental 

consanguinity, congenital anomalies), medians and interquartile range (IQR) for non-normally 

distributed data (time to diagnosis of neonatal diabetes, gestational age at birth, birth length, 

weight SDS and length/height SDS) and mean and 95% confidence interval (CI) for normally 

distributed data (birth weight).  

The relationship between birth weight and birth length without fetal insulin and gestational 

age were modelled using a univariable linear regression and prediction intervals and measures 

adjusted to 40 weeks’ gestation were calculated from this model.  

P values <0.05 were considered statistically significant. All tests of statistical significance were 

two-tailed. All analyses were performed in R version 3.6.2 (R Foundation for Statistical 
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Computing) or Stata version 16.0 (StataCorp, College Station, TX, U.S.A.). Figures were 

produced in R version 3.6.2 using the ggplot package (6). 

Study approval  

Written consent from participants (or their responsible guardians, where applicable) for use of 

their samples and clinical information for research was obtained. Samples and clinical 

information is stored securely in the Genetic Beta Cell Research Bank 

(https://www.diabetesgenes.org/current-research/genetic-beta-cell-research-bank/), 

approved by the Wales Research Ethics Committee (Reference 17/WA/0327). 

  

https://www.diabetesgenes.org/current-research/genetic-beta-cell-research-bank/
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Supplemental Tables 

Supplemental Table 1 

Table 1. Clinical characteristics at birth for individuals included in analyses of birth weight 

without fetal insulin.  

Characteristic 
Recessive INS 
mutations (n = 

21) 

Pancreatic 
agenesis (n = 

43)A 

P value for 
comparison 

between 
groupsB 

Whole cohort 
(n = 64) 

Females (%) 10 (48) 21 (49) 0.93 31 (48) 

Reported ethnicity (%) 

African 0 (0) African 1 (2) 

0.03 

African 1 (2) 

Arabic 14 (67) Arabic 16 (37) Arabic 30 (47) 

Asian Indian 2 
(10) 

Asian Indian 0 
(0) 

Asian Indian 2 
(3) 

European 3 (14) 
European 17 

(40) 
European 20 

(31) 

Mixed 0 (0) Mixed 1 (2) Mixed 1 (2) 

Unknown 2 (10) Unknown 8 (19) 
Unknown 10 

(16) 

Parental 
consanguinity (%) 

Yes 17 (81) Yes 17 (40) 

2.1 x 10-4 

Yes 24 (38) 

No 1 (5) No 23 (53) No 34 (53) 

Not known 3 (14) Not known 3 (7) Not known 6 (9) 

Presence of congenital 
anomaly (%) 

Yes 0 (0) Yes 24 (56) 
4.0 x 10-6 

Yes 24 (38) 

No 21 (100) No 19 (44) No 40 (63) 

Time to diagnosis of 
PNDM in days (IQR) 

1 (1 to 5) 1 (0 to 2) 0.21 1 (0 to 2) 

Gestational age at 
birth in weeks (IQR) 

36 (36 to 37) 37 (36 to 39) 0.26 37 (36 to 38) 

Birth weight in grams 
(95% CI) 

1455 (1354 to 
1556) 

1523 (1427 to 
1618) 

0.38 
1501 (1430 to 

1571) 

Birth weight SDS 
(IQR)C 

-3.17 (-3.48 to -
2.64) 

-3.11 (-3.56 to -
2.49) 

0.81 
-3.11 (-3.53 to -

2.60) 

Birth length in cm 
(IQR)C,D 

42 (39 to 44) 41 (39.5 to 41) 0.41 
41 (39.5 to 

43.5) 

Birth length SDS 
(IQR)C,D 

-2.84 (-3.65 to -
1.55) 

-3.29 (-3.62 to -
2.45) 

0.46 
-2.86 (-3.62 to -

1.90) 

Data are presented as counts with percentages of the group, mean with 95% CI, or medians 

with IQR as appropriate. 

AIndividuals with pancreatic agenesis had a mutation in CNOT1 (n = 2), GATA6 (n = 20), PDX1 (n = 3) or PTF1A (n = 

18). BCharacteristics were compared between the two groups using Pearson’s Χ2 or Fisher’s exact test (categorical 

data), unpaired T-tests (continuous, normally distributed data) or Mann-Whitney U tests (continuous, non-normally 
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distributed data) where appropriate. CWeight and length standard deviation scores (SDS) for sex and gestational age 

were calculated using the INTERGROWTH-21st standards . DBirth length was available for 11 individuals with a 

homozygous INS mutation and 6 individuals with pancreatic agenesis. CI = confidence interval; IQR = interquartile 

range; PNDM = permanent neonatal diabetes; SDS = standard deviation score. 
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Supplemental Table 2. Mutation details for individuals with recessive INS mutations and pancreatic agenesis included in birth weight cohort. 

Gene Mutation type Zygosity Nucleotide change Mutation name Number with 
mutation 
(N=64) 

Reference to papers 
where participants 
with mutation have 
previously been 
reported 

INS Deletion affecting 
regulatory region 

Homozygous c.-366_-343del p.? 1 Garin et al. (7) 

INS Deletion Homozygous c.-370-?_186+?del p.(Met1_Gln62del) 2 Garin et al. (7), Raile et 
al. (8) 

INS Deletion Homozygous c.(?_-1)_(333+1_?)del p.(Met1_Asn110de
l) 

4 - 

INS Nonsense Homozygous c.136C>T p.(Arg46*) 2 - 

INS Nonsense Homozygous c.184C>T p.(Gln62*) 1 Garin et al. (7) 

INS Promoter Homozygous c.-331C>G p.? 5 Garin et al. (7), Al 
Shaikh et al. (9), 
Demiral et al. (10) 

INS Splice site Homozygous c.188-15G>A p.? 4 - 

INS Start-loss Homozygous c.3G>A p.(Met1?) 1 Garin et al. (7) 

INS Start-loss Homozygous c.3G>T p.(Met1?) 1 Garin et al. (7) 

CNOT1 Missense Heterozygous c.1603G>A p.(Arg535Cys) 2 De Franco et al. (11), 

Hilbrands et al. (12) 

GATA6 Deletion Heterozygous c.(?_-1)_(1788+1_?)del p.? 1 - 

GATA6 Deletion Heterozygous c.(?-265)_(1135_?)del p.? 1 - 

GATA6 Frameshift Heterozygous c.701del p.(Pro234fs) 1 Lango-Allen et al. (13) 

GATA6 Frameshift Heterozygous c.744del p.(Pro249fs) 1 - 
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GATA6 Frameshift Heterozygous c.1036_1042del p.(Thr346fs) 1 De Franco et al. (14) 

GATA6 Frameshift Heterozygous c.1108_1121dup p.(Glu375fs) 1 Lango-Allen et al. (13) 

GATA6 Frameshift Heterozygous c.1448_1455del p.(Met483fs) 1 Lango-Allen et al. (13) 

GATA6 Missense Heterozygous c.1354A>G p.(Thr452Ala) 1 De Franco et al. (14) 

GATA6 Missense Heterozygous c.1367G>A p.(Arg456His) 1 Lango-Allen et al. (13), 

Balasubramanian et al. 

(15) 

GATA6 Missense Heterozygous c.1369A>G p.(Arg457Gly) 1 - 

GATA6 Missense Heterozygous c.1396A>G p.(Asn466Asp) 1 Lango-Allen et al. (13) 

GATA6 Missense Heterozygous c.1399G>A p.(Ala467Thr) 1 Lango-Allen et al. (13) 

GATA6 Nonsense Heterozygous c.969C>A p.(Tyr323*) 2 De Franco et al. (14) 

GATA6 Nonsense Heterozygous c.1242C>A p.(Cys414*) 1 Tuhan et al. (16) 

GATA6 Splice site Heterozygous c.1303-2A>G p.? 1 - 

GATA6 Splice site Heterozygous c.1303-10C>G p.? 1 Lango-Allen et al. (13) 

GATA6 Splice site Heterozygous c.1429-41_1441del p.? 1 De Franco et al. (14) 

GATA6 Splice site Heterozygous c.1516+1G>C p.? 1 Lango-Allen et al. (13), 

Wintergerst et al. (17) 
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GATA6 Splice site Heterozygous c.1516+4A>G p.? 1 Lango-Allen et al. (13), 

Barbarini et al. (18) 

PDX1 Missense Homozygous c.478C>A p.(Glu160Lys) 1 - 

PDX1 Missense Homozygous c.524G>A p.(Arg175His) 1 - 

PDX1 Missense Homozygous c.524G>T p.(Arg175Leu) 1 - 

PTF1A Enhancer Homozygous g.23508305A>G p.? 1 Weedon et al. (19) 

PTF1A Enhancer Homozygous g.23508363A>G p.? 5 Evliyaoğlu et al. (20) 

PTF1A Enhancer Homozygous g.23508365A>G p.? 1 Weedon et al. (19) 

PTF1A Enhancer Homozygous g.23508437A>G p.? 6 Weedon et al. (19) 

PTF1A Frameshift/enhancer Compound 
heterozygous 

c.437_462del/g.23508442A
>G 

p.(Ala146fs)/p.? 1 Gabbay et al. (21) 

PTF1A Missense Homozygous c.571C>A p.(Pro191Thr) 3 Houghton et al. (22) 

PTF1A Start-loss Homozygous c.1A>G p.(Met1?) 1 - 
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Supplemental Table 3. Birth weights in cohort by different phenotypic/genotypic groups. 

Group Mean birth 
weight, g (95% CI) 

Mean birth weight 
adjusted to 40 
weeks’ gestation, g 
(95% CI)A 

Median birth 
weight SDS (IQR)B 

Whole cohort 
(N=64) 

1501 (1430 to 
1571) 

1696 (1585 to 1806) -3.11 (-3.53 to -
2.59) 

INS mutation (N=21) 1455 (1354 to 
1556) 

1730 (1483 to 1976) -3.17 (-3.48 to -
2.64) 

Pancreatic agenesis 
(N=43) 

1523 (1427 to 
1618) 

1698 (1564 to 1833) -3.11 (-3.56 to -
2.49) 

Isolated INS 
mutation or 
pancreatic agenesis 
(N=40) 

1505 (1427 to 
1583) 

1693 (1542 to 1844) -3.13 (-3.43 to -
2.63) 

Isolated pancreatic 
agenesis (N=19) 

1561 (1200 to 
1980) 

1671 (1454 to 1887) -3.12 (-3.29 to -
2.58)  

Additional structural 
anomaly presentC 
(N=24) 

1492 (1346 to 
1639) 

1704 (1504 to 1904) -2.96 (-3.69 to -
2.44) 

Coding INS 
mutationD (N= 9) 

1456 (1359 to 
1554) 

1650 (1438 to 1862) -2.74 (-3.17 to -
2.61) 

Non-coding INS 
mutationE (N=12) 

1455 (1278 to 
1631) 

1851 (1379 to 2323) -3.30 (-3.53 to -
2.76) 

ACalculated from a univariable linear regression model including birth weight as the dependent 
variable and gestational age at birth in weeks as the independent variable. BWeight standard 
deviation scores (SDS) for sex and gestational age were calculated using the INTERGROWTH-21st 
standards (3). CCardiac, brain, gastrointestinal. DNonsense or deletion affecting coding region of 
gene. ESplice site or promoter region. CI = confidence interval; IQR = interquartile range; SDS = 
standard deviation score 
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Supplemental Table 4. Most recently available clinical measurements for 16 individuals of 

original birth weight cohort with recessive INS mutations. Data are presented as medians with 

IQR. 

Age of 
measurement 

(years) 

Weight SDS for 
age and sexA 

Height SDS for 
age and sexA,B 

HbA1c 
(mmol/mol) 

Insulin dose 
(units/kg) 

14 (7 to 18) 0.19 (-0.67 to 
1.33) 

-0.78 (-1.78 to -
0.19) 

58.5 (55.1 to 
78.1) 

0.97 (0.78 
to 1.07) 

ACalculated using the WHO Child Growth Standards (4) up until the age of four years, then the British 
1990 Reference (UK-WHO) (5) up until the age of 18 years. Where the most recent measurement was 
after the age of 18 years, we standardized to 18 years. BAvailable for 15 out of 16 individuals. IQR = 
interquartile range 
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